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ABSTRACT

o
—
Very often, populations exlst that, logically, should satisfy linear

stochastic ordering requirements. For example if a mechanical device is
improved through N stages, the corresponding survival functions should
be linearly stochastically ordered. Nevertheless, estimates may not re-
flect this stochastic ordering because of the inherent variability of the

observations. .
’,-. (“wi" EEETERS
HEre-we~characterize§the maximum likelihood estimates of the survival
Tharzs
[l T~

functions subject to linear stochastic ordering requirements. ~W&-show-our

estimates may be expressed in terms of the well-known Kaplan-Meier product
Y s
ﬁn iterative algorithm which we show must

converge to the correct solution that depends only upon solving the pair-

limit estimates. We also gives

wise problem. .
[ SR
Finally we consider an example concerning survival times for peorle
with squamous carcinoma in the oropharynx when classified by degree of

lymph node deterioration at time of discovery.
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1. INTRODUCTION.

Often one wishes to estimate the survival functions (l-cumulative
distribution function) of populations from possibly censored data when
nothing is known concerning the functional form of the survival functions.
Appealing estimates in this situation have been obtained by Kaplan and Meier
(1958) and are usually referred to as Kaplan-Meier product limit estimators.
Although Kaplan and Meier restricted themselves to discrete distributions,
Johansen (1978) has shown that the product limit estimator is a maximum like-
lihood estimator (mle) in the class of all distributions under the generalized ;
maximum likelihood framework developed by Kiefer and Wolfowitz (1956).

Many times one may have a situation where, logically, distributions
must be stochastically ordered. For example, if a mechanical device is
improved, the probability of survival past any given time
for the improved device should not be less than that for the original

device. In this situation, it seems reasonable to require that estimates

of the survival functions should also satisfy this stochastic ordering.
Brunk et al. (1966) have given mle's for two stochastically ordered cdf's
for uncensored independent random samples. Dykstra (1982) has considered
this problem for the case of right censored data and has given the mle's
in the form of Kaplan-Meier product limit estimators with modified data.
In this paper, we are able to find the mle's of N22 survival functions
when a linear stochastic ordering exists among them. While the

solution has a nice characterization,obtaining the actual estimates is
quite difficult. An iterative algorithm depending only upon the solution

to the pairwise problem is given and is shown to converge to an actual mle.




2. THE PROBLEM

We shall assume that we have independent random samples, possibly with
right censored observations, from N discrete populations. The N=22 popula-
tions are assumed to be stochastically ordered, so that the corresponding

survival functions satisfy
st
(2.1) P zPZz---zp.

st
(We say P, 2 Pj if Pi(t) > Pj(t) for all t.) The problem is to find

nonparametric mle’s of the survival functions subject to the constraints in |
{2.1). We will without loss of generality (WLOG) assume that Pl(o) =
PQ(O) = eee = PN(O) = 1, so that all observations are positive.

Complete observations (failures) occur on a subset of the times

th
< e KL = =® i 1 i
Sl 82 S (SO 0 ,S 1 ) . The number of failures from the 1

population which occur at time S

is denoted by di The number of

J J°

losses (censored observations) in the interval [SJ’SJ+1) from the ith
population is denoted by zij' We assume the Eij losses occur at times
L(lj), r=1,---,4, ,, where these censoring times are fixed. (The same
r ij :
mle's would obtain for random censoring times which are independent of the ;

m i
times of failure.) Let n,, = L (d, +£., ) denote the number of items

ij r=4 1ir "ir

from the ith population surviving to Just prior to S We have assumed

j°
that our survival functions are discrete, but this is not really necessary,
as one may argue in the context of generalized maximum likelihood (see

Johansen (1978)) that our estimates need place probability only on those

timepoints at which observations occur.




3. REDUCTION OF THE PROBLEM.
Based on the notation in Section 2, the problem is to find survival

functions Pl,-“,PN which maximize the likelihood

) 4

)
N io . m d, ij ..
(i,0) -0) - i (1,3)

(3.1) 151{ 91 P(L, )JI=11{[P1(SJ 0) Pi(sj)] rgl P, (L, )}}

subject to the constraints

(3.2) P(t) = P, . (¢) V¢, i=1,-:",N-1.

1

For a given set of survival functions P -, P satisfying (3.2),

17N

we note that the likelihood cannot be decreased and (3.2) cannot be vio-
lated if we replace Pl(t) by a discrete P;(t) which has possible
jumps only at S.,,---,S and is such that P (S,) = P_(S,). If we now

1 m 17 1)
replace P2(t) by P;(t) defined to have possible Jjumps only as

S *,8 and P%(Sj) = P2(Sj), the likelihood cannot decrease and (3.2)

l,..

cannot be violated,
Continuing this reasoning, we see it will suffice to maximize the

expression

N nm
n Ife

4. L
) -p,(s.)] ¥ p (s,)
i=1 j=1 1 173 i3

ACH

i+l

functions which place probability only at the points S,,8,,°",S .

subject to Pi(sj) =P (SJ) vy, i=1,"°*,N-1 among those survival




(We note that meximum likelihood estimates need not be uniquely defined
if the last observation from a population is a loss. We will avoid this
ambiguity by requiring our maximum likelihood estimates of the survival

functions to be as small as possible.) Equivalently, we wish to maximize

N m P.(8,) -d.. (P.(s a, P,(s L, .
II HE__ J(~(41_7] 1J[1( Ji'l) .+« pP.(S )] i) [__]('_(_J_)yp(s )] 13’
i=1 =1L Fi'S50 P85 0) il Pi'85 il
P .(s,)
or letting p;j = i;%g;%;y, to maximize
ﬁ n 45, i TAY
Ia-9,,) "7 II o J
i=1 y=1 1Y S
J ’ j 7/
subject to [l pi. = 1 Piyp,p> 371 ams i =1,00 0 N1,
r=1 r=1

m .
F- . = . = ¢
inally, recalling that ny rEj(dirﬁ,ir), letting Ps 4 1n p,

and considering the log of the likelihood, it will suffice to maximize

N m pij
(3.3)  f(p see,py) = )_j {, 4;, In(1-e *7) +(n;, -d, o,
i=1l j=1
subject to the constraints
(3.0 ) ;
3. pP.. = o s, 02p 2 -
r=1 ir r=1 i+l,r iJ

for j=1,---,m; i=1,---,N-1.

The problem has been reduced to maximizing a concave function subject to

linear inequality constraints.




Since we are maximizing a bounded concave function over a closed

convex region, there must exist a solution p = (51,---,5N) which satis-

fies the constraints in equation (3.4) and maximizes equation (3.3). If
the active constraints (those where equality holds) of equation (3.L)
needed for a solution ﬁ were known, the number of variables could be
reduced by using certain of the expressions in (3.4) with equality holding.
Then expression (3.3) could be maximized by setting the appropriate partial

derivatives equal to zero, or by other means, and solving for the remaining

independent variables. Of course, determining which constraints are the
active ones is, in general, a very difficult problem. However, by noting
that certain equality constraints must hold, and then maximizing equation

(3.3) subject to an arbitrary fixed set of equality constraints in (3.h4),

the general form of the solution ﬁ can be determined.

8, 8, a, &,
Notice that the constraints gzipi‘ = inpi+l"’ 1§ipi‘ = ‘Eipi+l,z,...,
& x ! ! %2
[Elpi" = zélpi+l,£ can be written as ﬁlpif };*lpiu R ‘=§1 T
82 s %
‘;§l+lpi+l,£’...' z=§k_l+1piz = =§k_l+lpi+l’£, so that an arbitrary Ps

need be present in at most two active constraints. Thus suppose pi'

H
(%)

is present in

b b-1
Pie1,b ~ ,Eapu ) Li:apm,z’
and
s s-1
pi,s ) lgrpi-l,l B lgrpi,l' a<J<b and rsj<s.




Also suppose that di > 0, and no other parameter equals pij' Then,

J

with appropriate substitution, the partial derivative with respect to

P;y of equation (3.3) set equal to zero yields

P
4, .e 13
i
3.5 - 4 a . -4, =n,, -k,
( ) ( pij) J iJ ij ij
l-e
where
1 epi+l,b
i+1,b
= o + -
kij ( Pi1.p (ni+l’b di+1’b)
1l-e 7))
and
a epis
by = - 1sp + (ng-a; )
(1-e %)

Of course it doesn't matter which variables we choose as the depen-

dent variables. It follows that ki must have constant value for

J

a<J<b, providing di >0, and hi must have constant value

+1,J J

for r< j<s |if di > 0., Solving the equation for pij yields a

J

solution of the form

. ni -di +ki -hi
(3.6) P = ln(—‘j——"]——i——'j') .
13 nij+kij-hij
Inspection of hij and kij will reveal that hiJ = ki-l,j if both
d and d are positive. If 4,, = O, that part of the objective

iJ i-1,) i)
function (3.3) involving pid is linear in piJ with nonnegative slope.




T

Intuitively, p;J should be as large as possible, and hence equal to zero 1
unless our constraints will not allow this. This would happen for example

i > = = s -

if dll 0, but d2l d22 0. Then our constraints would require that

= p21 and p12 = p22. We make these substitutions, and then solve by

Py
derivative methods. We will show later that these solutions are still of

the form (3.6) for appropriate kij’ and appropriate definitions of inde- i

terminate forms. Once d,, > 0, p¥, =0 if 4,, =0, £ > j. Note that
iJ il if

if pgz = 0 and dij = 0, then hil is indeterminate, and hence does not

violate our claim of constant hij over r £ j < s. In any event, pzj

can always be written in the form of (3.6) if indeterminate values are

properly defined.
Since the true solution, ﬁ, is given by p* for some set of active

constraints, ﬁ is necessarily of the form

- N nll—dl +kl
P13 7 ™M\ +x

o

o
i

. .—d, .+k. .-k,
(3.7) = 1n(ml’j 1] i 1'1’3) 2< 1< N-1

N i 1
= M PR I

ln(“Nf“m“‘N-l o )

Nyy~kyo1,3

for appropriste values of kiJ and appropriate definitions of indeterminate
forms.

Now, the problem is to identify the kij's. Heuristically, since the

k,.'s may be interpreted as playing the same role as the nij's, the esti-

)

mates are obtained by transferring unfailed items from one sampie to the




next stochastically larger sample, and then using the Kaplan-Meier (maximum
likelihood) estimate for each survival function. It will then turn out
that the kij's will never be negative, which seems reasonable in light

of our one-sided restrictions. Of course probability could be transferred
from one population to several larger populations, but (3.7) indicates

that we do not need to think of things this way.

Even if the active constraints were known, a large number of simultaneous
nonlinear equations would have to be solved to find ﬁ. In the following
sections, the kiJ's will be characterized and a method using this char-
acterization will be given to estimate the N survival functions, avoiding

the simultaneous nonlinear equations problem.




4, KUHN-TUCKER CHARACTERIZATION

The characterization of the kid's requires some theory from convex
analysis. The problem of estimating N survival functions subject to the
stochastic orderings given by equation (3.2) may be written in terms of &
particular ordinary convex programming problem. An ordinary convex
programming problem 1is to find the vector p which minimizes a given con-
vex function fo(p) subject to the constraints fj(p) £0, j=1,-++,n vhere
each f, is a convex function on R. By letting fo(p)==-f(p) from equa-

J

tion (3.3), and letting fij(p) = ‘§1Pi+l,2-£=lpi£

. i:l,.-.,N_l; j:l’...’m,
our problem is couched in the terms of an ordinary convex programming prob-
lem. We call A = (Xl,kz,"~,1n) a Kuhn-Tucker vector if lj 20 for
j=1,--+,n, and if the unrestricted infimum of h(p) = f,(p) + X £ (p) +

<.+ ann(p) is equal to the restricted infimum of fo(p). The following

theorem from Rockafellar (1970) characterizes Kuhn Tucker vectors, and will

be useful in characterizing the kij's'

Theorem 4.1. Let A and ﬁ be vectors in K and i respectively.

In order that A is a Kuhn-Tucker vector for our problem and ,ﬁ is an !

optimal solution, the following conditions are necessary and sufficient.

. a. .XJZO, fj(p)so, and Ajfj(p)zo for J = 1,++-,n,
.1

b. 0€ [afo(p) +,xlaf1(p) + o +Alnafnﬂp)]

where afj(p) is the set of all subgradients of fJ at 5.

Since the true solution and a Kuhn-Tucker vector must satisfy the




subgradient equation in (4,1b), the general form of a Kuhn-Tucker vector

can be found for our problem using the general form of the solution given

in equation (3.7).

Theorem 4.2. If 513 denotes the solution to the problem specified

in equations (3.3) and (3.4), then a Kuhn-Tucker vector corresponding to

3 {
the constraints fij = § pi+l,£ - & piz < 0 1is given by
£=1 A=1
- £ <
kiy By ge > LSd<m
Aij =
k R J=m

im

when the solution p is specified in the form given by (3.7).
Proof: 1In the ordinary convex program characterization of our problem,

N m pij
fo(p)’- i}=:l jgldi'j In(l-e “Y)+ (nij'dij)pij

which we want to minimize subject to the constraints

J
Lp,,s0 for i=1,-++,N-1; j=1,-++,m,

J
fij(p) = X p, L

=1 i+1,4

Notice that fo(p) and f, (p), i=1,++«,N-1; j=1,.+-,m are differenti-

J
able functions of Pty for i’ and J’ so that equation (L.1b) can be

written in matrix notation. (Of course the n in Theorem L.l is now

m(N-1).) Equation (4.1b) then becomes Q= FO+FX, where FO is the

NmX 1 vector of derivatives of f _ (p) with respect to 1 A is an

0 J?




1

(N-1)mX 1 Kuhn-Tucker vector and F is the NmX (N-1)m matrix of par-
tial derivatives of fij with respect to pi'J' and 0 is an Nmx 1l

vector of zeros.
Equivalently, we must have FA = -FO, and since F 1is of full column

rank which is less than the number of rows, any solution to our equation

must be unique., We may express F as

where T is an upper triangular matrix of ones. We note that FO has

the form

k17K
: where i=1,"**,N-2,

Kim™ ki+1,m

ky-1,1
kI‘I-l ,n

It can be verified that a conditional inverse of F 1is given by




ol
[y

1 0 0 x
D N S
o
Foo=| gl g1 g1,
L S S
where
-1 0 0 -+ O
1 =1 0 e
=l 0 0 1 -1

.t eee 102

Careful calculation will verify that X = -FF_ is of the desired form

0
and a solution to equation (4.1b).

Conditions (4.1a) must hold if the Xij's are to form a Kuhn-~Tucker
vector. If lij 2 0, the kij's occurring in equation (3.7) must be
such that

. > ... i .
(4.2) kil > ki2 = kim =20 for all i

Conversely, if equation (4.2) holds, the Xij will be nonnegative.
The condition that Xifi(ﬁ) = 0 in Theorem 4.1, together with the
monotonicity requirement given in equation (L.2) leads to a characterization

for the solution provided certain indeterminate forms are properly defined.

Thus we have the following theorem.
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Theorem 4.3. A solution to the problem of maximizing f(p) given in
equation (3.3) under the constraints in equation (3.4) are given by the

513'5 described in equation (3.7) iff the kij‘s are such that:

a) the ﬁij's in (3.7) satisfy the constraints in (3.4) and

P 513 < 0,

b) kilzkigz---zkimzo for i=1,2,-"+,N-1, and

J.
Lp

Jj
> 3 =
c¢) whenever kiJ ki,J+l’ zglpiz L 141,4

provided some indeterminate forms are appropriately defined.

Indeterminate forms occur when dij = 0 for io <i and 3} < jO and
di 3 > 0. In this case,
(ohad]
N
Zn -d k

p. = p = eces = p = ln

as mentioned earlier. Notice that this is consistent with (3.7) where we

take

N
kK,, = L n,, , i>i,jJ<3
1) pagay 4 0 0

since this leads to indeterminate forms.




1k

5. OBTAINING THE 513

Even though Theorem 4.3 characterizes the solution to the problem,

it does not provide any means of obtaining the solution in general. How-
ever, for the case N = 2, Dykstra (1982) has found closed form expressions

for the -ﬁi as well as an efficient algorithm for calculating them. We

J
will elaborate on this procedure, and then give an iterative procedure based
only on this pairwise scheme which will converge to the general solution.

This will give us a means of solving the general problem.

To solve the pairwise problem, one need first identify the integer JO

such that GZJ =0, J< jo, but dQ,JO > 0. Then
+ -
(5.1) 5 =3, = 2l 2"
13 23 nlj +n23

(which requires that k1 =n_,) for j< jo. For jo £ asb, we let

J 23
k denote the solution to
a,b
b nlj_dl +k b n2|-d21-k
Z 1 n., +k = LI 1n n,. -k
J=a 13 j=a 23

if it exists positively and O otherwise., Then Dykstra has shown the _5.

ij
J J N
which maximize (3.3) subject to the linear constraints Z plj z I p?J
i=1 i=1
are of the form
n,, -4 +E n,, -d —i
- : - 2 2 1
(5.2) R B A
1 n ., +k 2J n.,, -k
1y 1 23 713
4 » '
‘ vhere klJ = :é? ?2§ ka,b for J =2 JO. The restricted mle's of Pl(t)

and P2(t) are then given by




(5.3) P, (t) = exp[ r 513] , 1=1,2.
J

We shall take Pi(t) to be as small as possible subject to the order

restrictions so as to ensure uniqueness of the estimates. Using the fact

> > ..
11 k12 = klm’

used to compute the mle of plj and p2j for jJ=1,---,m. This algorithm

that k Dykstra has derived an algorithm which can be

is given below:

Pairwise Algorithm

Algorithm for two survival functions Pl(t) 2 P2(t):

1. Define ﬁij (and k_.,) as in (5.1) for 3 < o

1
2. Find the largest jl 2 jo such that the klj 2> 0 which solves
1
J - + J -d,. -k
1 n1 dlj k _ 1 n, 23
Z 1n -—JE;—~;E;—- = X 1n ——4%;——:3;—-
=3, 13 =3, 23
is maximized. Then let klj = kljl for JO £ J< Jqe

3. Find the largest j, > J such that the k.., > 0 which solves
2 1l 1j

2
J - J - _
2 nl] dl +k 2 n21 d2 k
. el R R e
J=3,*1 1 J=ip* 23
: . - i < .
is maximized. Let klj li for 31 J =< j2

2

L. Continue until either Jh =m or no such positive klj exists, in
h

. - > . g ~
vhich case let k, 0 for § >4, ;. Then Py and Pi(t) are

J
given as in (5.2) and (5.3) respectively.
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The N sample problem can be solved using an iterative procedure
based upon the pairwise algorithm given previously. The pairwise method

is used to massage (readjust) the data until an equilibrium point is

reached. Letting kSL) be the estimate of Xk found during the Lgﬁ

iJ iJ
iteration of the algorithm, the N sample algorithm is given as follows:

1. Find the kil;'s corresponding to Pl =P
’

rithm given previously.

5 using the pairwise algo-

2. Incorporate kif; into nl,J and ng’j by replacing nl,j by
nl,,j+k](.3,h3 and ng,J by n2,j-k](f;'

3. Using the adjusted data, find the kéf}'s corresponding to P2 2 P3
using the pairwise algorithm.

4. Replace nz’J-k(l) by n2,J (fg k{fg and N3y by n3’j-kéf§.

5. Continue down the chain of survival functions until the N-lth and

Nth samples have been compared, and nN 1, has been replaced by
=4

(1) (1) (1)
nN—l,J N—2 j N~1 .3 and nN,j has been replaced by nN,j"kN-l,J'

6. The procedure starts again at the top of the chain. After setting
(13-0 for j=1,"°*,m, find the k(a)
>

using the pairwise algorithm,
(2)

2
1,3 corresponding to P1 P2

(2)

7. Incorporate k into the data by replacing n by n +k
( ) 1,3 ( ) ( : 1,J i, 1,
1 1 2
and n by n
2,5"2,5 B Myt Ry
8. After setting élg 0 for j=1,*++,m, use the pairwise algorithm
9

(2)
P 3
to find k2,J for P2 P3 and incorporate

k(z) by replacing
2,J
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(2) (1)
2,0 F1,5 B g gty g-kyy end mg gvkyly by

(1) (2)
3,3 3,47 2,3°

n

n

9. Continue down the chain, taking out the effect of the comparison
(1)

in the previous iteration, recomparing Pi 2 Pi+1’ and then

(2)

reincorporating the new kij 's.

10. When the bottom of the chain is reached, start with this procedure

again at the top of the chain and continue until achieving convergence.

The estimated ﬁij's are then obtained from (3.7) and the latter part

of Theorem 4.3 with the ki;)

~(4)
P

obtained above entered in. We will let

(8),,

indicate (3.7) with the kij entered,

Theorem 5.1. The procedure discussed above must yield values of pig)

which converge for every i and j as £—~®, Moreover, these limlting
values solve the problem of maximizing f(p) subject to the constraints

3

Ld p+1‘ for Jj=1l,ecc,m; i=1,¢+¢,N-1.

Proof: Consider the first step of the second cycle. We obtain kii)

by using the pairwise algorithm for P, 2 P2 with the data nlj’ and

1
(1) | .
+ .
n2j kQJ in place of nlj and ngj. We need to consider two cases:
(2) (1), K (1)
L] = s *
1. If d2‘ 0 for £ J, then k 13 n2J 2J 1'12'j lJ
2. Otherwise k(e) = min max k' where k' is positive and
13 as} j€b 2,0 a,b
solves
(1)
b n.,-d ,+k b n., tk -d,, -k
5 1n<_y_u_) -3 1n( 2)" "2y " 2y )
J=a nLj+k J=a n +k(lT:k
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or is zero.
If k is positive and solves
a,b
b n,,-d.,+k b n..-4. ,-k
R e B G U
J=a 1] Jj=a 24
it easily follows that k' & k for all a,b, and hence
a,b a,b
(2) (1)
= .
klJ klj
Similar arguments suffice for other i, and we may conclude that ki?)
is nondecreasing in £ for all 1i,j. Since the kij) are uniformly
5 (4)
. Y
bounded (say by 1§1nil)’ we know there exists kij such that kij A kij'

Finally, noting that the 513 in (3.7) are continuous functions of the

..y and that the kf‘)
iJ i

we can argue that the ﬁij defined by (3.7) for the limiting values k

k correspond to solutions of the pairwise problems,

1J
satisfy the conditions of Theorem 4.3, and hence solve the general problem.

We mention again the sppealing form of the estimators. They are still
of the Kaplan-Meier form, where, heuristically, unfailed items from a

population are transferred to the next stochastically larger population.
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6. EXAMPLE

This example involves & large clinical trial carried out by the
Radiation Therapy Oncology Group cited in Kalbfleisch and Prentice (1980).
The analysis was done on only a small part of the data, and females were
deleted to make the data more homogeneous. Patients diagnosed with
squamous carcinoma of the oropharynx were classified by the deg.ee to
which the regional lymph nodes were affected by this disease,

We let Pl be the survival function corresponding to those patients
for whom the disease had no effect on the lymph nodes. Correspondingly,
we let P2, P3, and Ph be the survival functions of patients with
increased effects of the disease on the lymph nodes. The data for each
survival function is given in Table 1.

Because of the nature of the disease, one would certainly expect a
linear ordering with respect to lymphatic involvement. Thus an ordering
of the form Pl %S P2 %} P3 %} Ph seems inherently reasonable.

The unrestricted mle's (Kaplan-Meier) for these survival functions
are given in Table 3. Notice that with respect to the expected orderings,
there are reversals so that estimates requiring these orderings will be
different. The algorithm given in Section 5 was applied to the problem.
The kij values found in the first two iterations, in the order
in which they were found, along with the essentially limiting values
obtained after 20 cycles are given in Table 2. (The procedure used here

actually worked pairwise from bottom to top rather than from top to bottom

as indicated in the paper. Of course, the limiting values will be

(#)

identical.) The values of these kij

indicate how much "smoothing" is

occurring between populations.
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- i

st st st
The mle's subject to the stochastic ordering Pl 2P, 2 P3 z P,

obtained via our algorithm are displayed in Table L. Note that the sto-

chastic ordering requirement has brought substantial change in our

estimates.
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TABLE 1

Survival Times in Days of Patients with Squamous Carcinoma in the Oropharynx
with Various Degrees of Lymph Node Deterioration (+ denotes censored observation).

Degrees of deterioration of lymph nodes.

i=1 i=2 i=3 i= X
167 216 105 94
238 324 222 99
276+ 338 279 112
296 347 395 127 ,
324 599 465 134 5
351 763 546 147 g
372 929 915 192
37k 1086+ 918 219
Lok 1092 1058+ 255
Lys+ 1317+ 1455+ 262
541 1609+ 164L+ 27k
560 293
943 307
998+ 327
1234+ 33k
1460+ 363
1823+ 407
413+
459
(The degree of deterioration (i) equals 517
N-stage tumor classification in 532
Kalbfleisch and Prentice (1980) plus one.) Skl
672
696
800
91k
1312+
1Lkh6+

1472+




Values of the

TABLE 2
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obtained for survival data in Tsble 1.

First cycle:

K(1) _2.333
33 0

1.853

kéj) = 1.205
0

12.853

kD= "i3h0
J 0

Second cycle:

(2) _ 3.569
k33 -0
5.481
K(2) _ 3.752
23 1.205
0
12.853
{2) = T5l8ig
13 0

Twentieth cycle:

10.525

k(?o) = 1,438

12.290

((20) _ 5.763

23 1.205
0

12.853

(20) _ 10.371

13 7.253
0

29 <

9<

11 <
29 <

9<

3<

n =
\O H
AA

[s Ve
AA
Con G € Gt Cie G € T

N

VAW

Cse Ce Cse

Cte Coe

J

Con
VIR

Ce Cae

A

VAR

VA

VWIARK

VARKR VAR

VARW

11
29
53
53

Lo
Lo

17
17

11
29
53
53

20
Lo
Lo

37h <

192 <

219 <
374 <

192 <

105 <

219 <
37h <

192 <
307 <

=3
VIRK

3 +3 3
VMWW

H 3 a3 33 33 =333 H 3
VW

VA AR

333
VA RKRRK

VK

VI HRH VR

VAN

105
105

37L
1609
1609

192
560
560

105
105

219
37k
1609
1609

192
560
560

105
279
279

219
3Th
1609
1609

192
307
560
560




TABLE 3
Kaplan-Meier MLE's of survival functions from data
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Index Time Pl P2 P3 Ph
0 0.0 1.0000 1.0000 1.0000 1.0000
1 gk 1.0000 1.0000 1.0000 .9655
2 99 1.0000 1.0000 1.0000 .9310
3 105 1.0000 1.0000 .9091 .9310
L 112 1.0000 1.0000 .9091 .8966
5 127 1.0000 1.0000 . 9091 L8621
6 13k 1.0000 1.0000 .9091 .8276
7 147 1.0000 1.0000 .9091 L7931
8 167 .9k12 1.0000 .9091 L7931
9 192 .9h12 1.0000 .9091 .7586
10 216 .92 .9091 .9091 . 7586
11 219 .9k12 .9091 .9091 .72kl
12 222 .9lh12 .9091 .8182 LT2h1
13 238 . 8824 .9091 .8182 .72
1k 255 .8824 .9091 .8182 .6897
15 262 .8824 .9091 .8182 .6552
16 27k L8824 .9091 .8182 L6207
17 279 .8824 .9091 L7273 L6207
18 293 .8824 .9061 L7273 . 5862
19 296 .8193 .9091 L7273 .5862
20 307 .8193 .9091 .7273 L5517
21 324 L7563 .8182 L7273 .5517
22 327 L7563 .8182 L7273 5172
23 334 L7563 .8182 7273 L4828
24 338 L7563 7272 L7273 .u828
25 347 L7563 .636h L7273 L4828
26 351 .6933 6364 L7273 4828
27 363 .6933 .6364 L7273 L4483
28 372 .6303 L6364 L7273 Luh83
29 37Tk .5672 L6364 .T273 LLL83
30 395 L5672 L6364 L6364 LL483
31 Lol . 5042 L6364 .636k . 4483
32 LoT7 . 5042 L6364 .6364 L4138
33 Lsg L5042 .6364 .636h .3762
3k L65 .50b42 L6364 .5455 L3762
35 517 L5042 .636L .5kLs5 L3386
36 532 .50k2 .636L .5455 . 3009
37 5h1 322 L6364 . 5455 . 3009
38 5hl .h322 .636k .5kss .2633
39 546 L322 L6364 546 L2633
4o 560 . 3601 L6364 Lshe . 2633
1 599 . 3601 . 5455 L4skh6 .2633
L2 672 . 3601 L5455 RN .2257
L3 696 .3601 . 5455 RIS .1881
Ll 763 . 3601 L4546 LLskh6 ,1881
s 800 .3601 546 LL5khé .1505
L6 914 .3601 L4546 RICING L1129
W7 915 .3601 LLsSkE L3636 .1129
L8 918 . 3601 LUsL6 2727 .1129
Lg 929 . 3601 .3636 2727 L1129
50 943 .2881 .3636 2727 .1129
S1 1092 .2881 .2hk2l L2727 L1129
52 1h72 L2881 L2lol L2727 . 0000
53 1609 .2881 .0000 L2727 . 0000
5l 1644 .2881 .0000 .0000 .C000
55 1823 .0000 . 0000 . 0000 .0000
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TABLE L 24
MLE's of survival functions under order restrictions from data in Table 1.

Index Time Pl P, P3 Py,
0 0.0 1.0000 1.0000 1.0000 . 0000
: 9L 1.0000 1.0000 1.0000 L9459
) 99 1.0000 1.0000 1.0000 .8918
3 105 1.0000 1.0000 .8917 .8918
L 112 1.0000 1.0000 L8917 .8569
5 127 1.0000 1.0000 .8917 .8220
6 134 1.0000 1.0000 .8917 L7871
7 14T 1.0000 1.0000 .8917 L7522
8 167 .9665 . 9665 .8917 L7522
9 192 L9665 .9665 .8917 L7173
10 216 L9665 .8917 L8917 LT173
11 219 . 9665 L8917 .8917 L6824
12 222 . 9665 L8917 L7346 L6824
13 238 .9299 L8917 L7346 .682k
14 255 .9299 . 8917 L7346 6LTE
15 262 .9299 .8917 .T346 L6127
16 27h .9299 .8917 L7346 L5778
17 279 . 9299 .8917 5775 L5778
18 293 .9299 .8917 5775 .5h57
19 296 .8917 .8917 L5775 .Sk5T
20 307 L8917 .8917 5775 L5136
21 324 L8uTT . 7869 L5775 .5136
22 327 BuTT . 7869 L5775 L4815
23 334 L8uTT . 7869 L5775 LLhol
24 338 L8LTT L6821 L5775 Lok
25 347 BT .5773 .STT5 .49k
26 351 .8036 L5773 L5775 LLbok
27 363 .8036 .5773 .5775 L4173
28 372 L7596 L5773 L5775 L1173
29 37k L7156 L5773 L5775 LB1T3
30 395 .T156 5773 L4625 L4173
31 Lok L6716 L5773 L4925 Lh173
2 Lot L6716 L5773 L4925 .3852
3 459 L6716 S5TT3 L4928 .3502
3 465 L6716 L5773 .ho75 .3502
35 517 L6716 L5773 .L075 .3152
36 532 L6716 L5773 L4075 .2801
37 541 L6245 L5773 L4075 .2801
38 shi L6245 L5773 L4078 L2451
39 546 6245 L5773 .3225 .2Ls51
iTo) 560 5773 5773 . 3225 .2ks1
L1 599 .5773 .5070 .3225 .2Ls1
42 672 L5773 .5070 .3225 L2101
43 696 L5773 .5070 . 3225 L1751
Ll 763 .5TT3 . 4366 . 3225 L1751
45 800 L5713 LL366 . 3225 .1k01
46 91k .5773 L4366 . 3225 .1051
L7 915 .5773 L4366 .2375 .1051
48 918 L5773 .L4366 .1526 .1051
L9 929 L5773 . 3662 .1526 L1051
50 gh3 L4619 .3662 .1526 .1051
51 1092 L4619 L2791 L1526 .1051
52 1472 L4619 L2791 .1526 .0000
53 1609 4619 .1525 .1526 . 0000
5) 16hk L4619 .0000 .0000 . 0000
55 1823 . 0000 . 0000 . 0000 .0000
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